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Methods from integral geometry 
and mathematical morphology yield 
efficient algorithms for the geometric 
characterization of microstructures 
using 3d images. In particular, the 
intrinsic volumes and their densities are 
used to describe objects like pores or 
cells and components, respectively.

Figure 1. Synchrotron CT-reconstruction 
of a glass fiber-reinforced polymer 
(GRP), 3.5µm voxel size. Sample: IVW 
Kaiserslautern, Imaging: ESRF Grenoble. 

Figure 2.  CT-reconstruction 
of an open aluminum 
foam,  64.57µm voxel size. 
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The geometry of the fiber system influences a fiber-reinforced material's 
mechanical properties. Besides the Minkowski-functionals and some 
derived quantities (Tab. 1), an important factor is the fiber orientation 
distribution, which is contained in the generalized projections needed to 
compute the integral of mean curvature MV. The orientation distribution J 
in the typical fiber point is related to these generalized projections by  
 
 

Thus, J  can be computed by inverting   
this cosine transform. 

We fit models of fiber systems (random sequential adsorption of non- 
overlapping cylinders) to the volume density VV and orientation 
distribution J measured from tomographic images [4].  

Figure 4. RSA-model of  
non-overlapping cylinders 
fit to a glass fiber-reinforced 
polymer.     

Intrinsic Volumes as Geometric Characteristics

The Minkowski functionals (i.e. volume V, surface area S, integral of mean 
curvature M and Euler number c) and their densities VV, SV, MV and cV ser-
ve as a basic set of characteristics for microstructures, e.g. the solid compo-
nents of open foams or the fiber systems in fiber-reinforced materials. Their 
estimation requires only a simple binarization of the foam structure and 
can be computed efficiently from µCT-images using discrete versions of the 
Crofton and Euler-Poincaré formulae [1].

Stochastic Models for Virtual Material Design

Fibrous Materials

Fibrous Materials

Open Foams

Open Foams

VV             10.56  %
SV            0.533  mm-1

MV            0.543  mm-²
cV            -0.079 mm-³
porosity     1-VV      89.44  %
strut length density  MV /(p(1-VV))    0.193  mm-²
mean strut diameter  SV /(pLV)     0.878  mm
mean strut perimeter SV /LV     2.758  mm

Table 2. Estimates of geometric characteristics of the aluminum foam shown in Figure 2.

VV            11.30  %
SV            14.20  mm-1

MV            485.53  mm-²
porosity     1-VV      88.70  %
specific fiber length  MV /(p(1-VV))    154.55  mm-²

Table 1. Estimates of geometric characteristics of the fiber-reinforced polymer shown in Figure 1.
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Similar to fiber systems, the Minkowski-functionals also characterize 
the geometry of the strut systems of open foams (Tab. 2). Especially for 
subsequent modelling steps, it is important to have access to geometric 
characteristics of the struts, not only to those of the tessellation [2].

Figure 3. The orientation distribtion J of the GRP 
in Fig. 1, computed in 13 discrete directions (x,y,z, 

6 face diagonals, 4 space diagonals).

Random Laguerre tessellations, a weighted form of the Voronoi 
tessallations, have proven to be suitable models for the edge system of 
open foams [3,5]. They are very flexible and allow to generate a large 
variety of cell structures. In particular, tessellations generated from dense 
packings of spheres model real foams very well. If required, the shape of 
the struts can be modified using locally adaptive morphology [5].

Figure 5. Dilated edge 
system of a random Laguerre 
tessellation fit to the open 
aluminum foam from 
Fig. 2.    

Interpreting the relevant component of a material as a stationary random 
closed set (RACS) leads to manifold stochastic material models. E.g., 
particle processes for fiber systems in fiber-reinforced polymers and the 
edge system of random tessellations for open foams. Using estimated 
characteristics as fitting parameters, stochastic models are fitted to the 
observed structures [3,4,5]. Simulations of physical properties in both the 
original samples and models with altered microstructure allow to study 
relations between the geometry of foams or fibers and their macroscopic 
behavior. This allows for a »virtual« design and optimization of materials 

for particular applications.


