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‘ Abstract I

A new model for random tessellations having a fractal com-
ponent is introduced. An explicit formula for the Hausdorff
dimension is given and the exact gauge function of its Haus-
dorff measure Is calculated. Moreover, fractal curvatures
and mean fractal curvatures are considered. A theoretical
result about the relation of these quantities is shown and is
demonstrated numerically by an example..

‘ 1. The Model |

A polyhedron P in R? (which is not necessarily convex) is
called , If there exists a natural number n € N
and polyhedra Pj,..., P, c R? similar to P, intersecting
each other only in their boundaries, such that

n
P=|] P
k=1
If in addition all P;. are congruent, we call P . Ex-

amples for replicating polyhedra are the cubes [0, 1]¢ or the
standard simplices A<,

By a ora M of R% we understand a con-
table family of polyhedra P;, P, ... (often called ) with
following properties:

o U, P =R,

e a bounded set in R? intersects only a finite number of
polyhedra,

e the interiors of two different polyhedra are disjoint.

A tessellation is called , If all polyhedra are con-
gruent (this assumption can be omitted, but is included for
holding formulas simpler) and each polyhedron P, is self-
similar and , If each P, admits a replicating dis-
section as described above. An example for a self-similar
tessellation is given by a tessellation, whose cells P, are
congruent (squares or higher dimensional) cubes. More
complicated examples were constructed in [2].

Let M be a self-similar tessellation. To each cell P, (k1 €
N) of M we associate a random variable X, with

P(Xy, =1)=1-P(X, =0)=p,

where p € [0,1] is a fixed model parameter. A random
tessellation I;(M, p) is now obtained from the determinis-
tic mosaic M by dividing all cells P, with X;. =1 according
to their fixed self-similar dissection. The cells of I1(M, p)
are denoted by P ., and we associate with each P ;. the
random variable X}, ;. with the same distribution as the X,
from above. The tessellation I5(M, p) is now obtained from
I;(M,p) by dividing all cells P according to their fixed
self-similar dissection iff X - X, = 1, i.e. none of the
factors equals zero. Proceeding in this way we obtain the

I, 1(M,p) from I,(M,p) by di-
viding all cells Py, ift X3 --- X} #0. Forn =1,2,3,4this
method is illustrated as follows:

Figure 1: The random iterations I,,(M,p), n =1,2,3,4 for a
square tessellation with p = 1/2

We are here interested in the limit as n tends to infinity. We
therefore define the

0
]OO<M7p> = U {apklkn : P]ﬁkn S [n(Mvp)}>
n=1

where OP is the boundary of the cell P and A denotes
the topological closure of a set A. Some limit sets of a
9-replicating tessellation of R? are illustrated below:
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Figure 2: A limit set forp = 0.8 andp = 0.5

2. Hausdorff Dimension and Exact Gauge Function |

et A c RYand h : [0,6] — [0,00), for some § > 0, be
right continuous and non-decreasing with h(t) > 0 for ¢t > 0
and lim;_.gh(t) = 0. Assume furthermore that there exists
a constant K > 0, such that h(2t) < Kh(t). The

H"(A) of A ¢ R? wrt. the his
defined by
(OO 00 )
HM(A) = lim inf WAL :AC | | AL Al <5,
(A) 55ﬂ>om<];(|k!) kLJlk‘k‘ >
\ " o /

where the infimum is taken over all coverings (Ay)72, of
A. In the definition, |A;| is the diameter of the set A;.. A
gauge function h is called for a subset A ¢ RY, iff
0 < HMA) < co. The dimp A of a set
A c R%is the unique D > 0 with the property that

‘oo s< D
0 s> D.

With a self-similar dissection P = P, U ... U P, of a polyhe-
dron P there are associated n contraction ratios ry, ..., ry,
which are given by the relation r.P = P, k= 1,...,n. In
the case of a replicating dissection these contraction ratios
are necessarily equal and we will write r =r;y = ... = ry In
this special case.

Theorem 1 Let p € [0,1] and M be a self-similar tessella-

tion of RY with associated contraction ratios r1., . ..,r, and
assume that for all k = 1,...,n we have 0 < r;. < 1. Then
I~o(M, p) has Hausdorff dimension D = max{d — 1, a} and
« obeys

Moreover,

is a exact gauge function for Io(M,p), if (37 _;r)~ 1 < p
and h(t) = t%1 is an exact gauge function in the case
(> joir) >

In the special case of a replicating tessellation A/ of R we

can give a more explicit formula for the Hausdorff dimen-
sion:

Inr

l
D = dimy Iso(M, p) :max{d— 1,d—ﬂ}.

For the exact gauge function we obtain

(D 1\ 17
t (lnln;) p>r

h(t) =
0=1"}
\

. p<T.

As an example we regard again the 9-replicating tessella-
tion of R? by squares.

Figure 3: Hausdorff dimension of the limit set as a function
ofp € [0,1]

3. Fractal Curvatures and Mean Fractal Curvatures |

et A ¢ R be polyconvex and » > 0. Then the volume of
the r-parallel set A, = {z € R? : dist(z, A) < r} can be
expressed as a polynomial of degree d:

d
vol(Ay) = de_ka(A)frd_k,
k=0

where w;. is the volume of the k-dimensional unit ball. The
coefficients C';. are called (or intrinsic volumes)
of the set A.

We define the Cl(Iso(M,p)) for k =
0,...,d of the limit set I(M,p) of a d-dimensional self-
similar mosaic M by

1
f oy D—k dr
s, p) i= Jim —= | P KO (oM. p))
Note that the curvatures C.((I-(M,p)),) are well defined,
since (Ioo(M,p)), is polyconvex for any » > 0. This ap-
proach leads in R? to d + 1 parameters, which reflect the
geometry of the fractal set (M, p). Since the limit sets

I~o(M,p) are random, the fractal curvatures C{(IOO(M, p))
are random, too. But using the renewal theorem for branch-

ing random walks one can show that C{([OO(M,]?)) IS a
random multiple, which only depends on the distribution of
I~o(M,p) but not on k£, of a deterministic integral I. So we
can write

Cf (Ioo(M, p)(w)) = X (w) - I(k, p, M),
This shows that the quotients

o ClUe(Mp)  1(kp, M)
. Cf (Ioo(M,p)) 1D M)

are deterministic constants and we are now going to char-
acterize them in terms of the of
Io(M,p). They are defined by the same idea as above.
Fork=0,...,d, we put

dr

_ 1
: /5 rDREC) (Too (M, p))r) .

f T

r

Theorem 2 For the limit set I (M,p) of a random self-
similar mosaic M in R?, the fractal curvatures and mean

fractal curvatures Cg (Iso(M,p)) and Cg (Iso(M,p)) exist and
are positive and finite. Moreover

Cl(Ioo(M,p)) Cl(so(M.p)  I(k,p, M) -
= I(,p M)~ K

le(IOO<M7p)) CZono(Mvp))

IS a constant only depending on k, [, M and p.

This shows, that from only one measuring we can obtain a
mean value, i.e. the mean value over the full sampile.

To demonstrate this numerically, we come back to our
square tiling example from above. We estimate the Haus-

dorff dimension and the fractal curvatures Og (fractal Euler

number), le (fractal boundary length) and (JQf (Minkowski
content) for the parameter p = % of 6 different realizations
of Ioo(M,p). The results are summarized in the following
table:

N dimyg Cl ol

1.5000 | —1893.78| 18340.17 | 64169.03
15519 —2396.06| 21096.40 | 77923.86
14452 —1690.27| 17737.18  57018.47
1.5069 | —1898.76| 18303.58 | 63596.43
14164 —1221.33 | 14481.39 | 45134.82
14505 —1498.31 | 16437.67 | 53719.87

From these values we can now compute the quotients ¢, ;:

S O = W N~

Nr.|  cpq 0.2 C1.9

—0.095295 | —0.029644 1 0.311077
—0.113576 1 —0.030748 1 0.270730
—0.103259 | —0.029512 1 0.285&810
—0.103229 | —0.029856 | 0.289223
—0.084338 | —0.02705910.320847
6 | —0.091151| —0.027891|0.305988

The values confirm experimentally the theoretical results
from Theorem 2 and show that the numerical methods —
which were originally developed for the deterministic case
— seem to be stable with respect to random perturbations.
Moreover, they seem to work even more accurate in the ran-
dom case, which was already expected. The values were
calculated unsing the GeoStoch software package devel-
oped at the University of Ulm.
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