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u + v decomposition :

Initial image ( f ) = BV (u) + oscillatory component ( v)

u + v + w decomposition :

Initial image ( f ) = geometry ( u) + texture ( v) + noise ( w)
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Linear �ltering

Noisy image (� = 35)

u (low frequencies) v (medium frequencies) w (high frequencies)
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Rudin-Osher-Fatemi model

(Physica D. 1992)
Problem of image restoration (f degraded image,u restored image) :

f = Ru + n

A way to reconstruct u :

inf
u

1
2�

kf � R uk2
2

| {z }
data term

+ L(u)
| {z }

regularization

Here we will assume thatR = Id .
In the ROF model, one usesL(u) = J (u) with :

J (u) =
Z



jDu j = sup

� Z



u(x)div ( � (x))dx=� 2 C1

c (
 ; RN ); k� kL 1 (
 ;RN ) � 1
�

If u is regular, then J (u) =
R


 jr uj dx.
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Rudin-Osher-Fatemi model

Setting v = f � u, the problem can be rewritten :

inf
(u;v )2 BV � L 2 =f = u+ v

�
J (u) +

1
2�

kvk2
2

�

But the L 2 norm does not measure oscillations.

Example : 
 = (0 ; 2�), and f n (x) = cos(nx).

The larger n, the more oscillatory f n is.
kf n k2

L 2 (
) = 1
2 .

=) Need to choose another norm which goes to 0 whenf n oscillates.
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Meyer's model

Y. Meyer (2001) has proposed the following model :

inf
(u;v )2 BV � G=f = u+ v

(J (u) + � kvkG )

The Banach spaceG contains signals with strong oscillations, and thus in
particular textures and noise.

De�nition : G is the Banach space composed of generalized functionsv which
can be written

v = @1g1 + @2g2 = div ( g)

with g1 and g2 in L 1 .

kvkG = inf
n

kgk1 =v = div ( g); g = ( g1; g2); g1 et g2 2 L 1 ; jg(x)j =
p

jg1j2 + jg2j2(x)
o

Example : 
 = (0 ; 2�), and f n (x) = cos(nx) =
�

1
n sin(nx)

� 0
.

Then kf n kG � 1
n .
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Example

Textured image Geometrical image

Images T V L 2 G T V=G

Textured image 1 000 000 9 500 360 86

Geometrical image 64 600 9 500 2 000 1

Remak : (G. Strang 1982)

kf kG(
) = sup
E � 


R
E f

P(E; 
)

=) Notion of scale (Strong-Aujol-Chan, MMS 2006)
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Some models
We use the notation :

J (u) =
Z

jDu j

T V � L 2 model (Rudin-Osher-Fatemi) :

inf
(u;v )2 BV � L 2 =f = u+ v

�
J (u) + � kvk2

L 2

�

T V � G model (Meyer) :

inf
(u;v )2 BV � G=f = u+ v

(J (u) + � kvkG )

T V � E model (Meyer) (E Besov space) :

inf
(u;v )2 BV � G=f = u+ v

(J (u) + � kvkE )

T V � F model (Meyer) (F =div(BMO) space) :

inf
(u;v )2 BV � G=f = u+ v

(J (u) + � kvkF )
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Some other models

T V � H � 1 model (Osher-Sole-Vese)

inf
(u � v)2 BV �H =f = u+ v

�
J (u) + � kvk2

H � 1

�

T V � W � 1;p model (Vese et al)

inf
(u � v)2 BV �H =f = u+ v

(J (u) + � kvkW � 1 ;p )

T V-Hilbert model (Aujol-Gilboa)

inf
(u � v)2 BV �H =f = u+ v

�
J (u) + � kvk2

H

�

T V � L 1 model (Nikolova) :

inf
(u;v )2 BV � L 1 =f = u+ v

(J (u) + � kvkL 1 )

Sparse-based approaches (Starck-Elad-Donoho, Daubechies-Teschke, . . .).

J.F. Aujol 9



Overview

1) Problem statement

2) T V + G model

3) T V + G + E model

4) T V-Gabor model

5) Parameter selection

6) T V � L 1 model

J.F. Aujol 10



Discretisation
An image is a two-dimensional vector of sizeN � N .
We denote by X the Euclidean spaceRN � N , and Y = X � X . X is embeded
with the Euclidean scalar product : (u; v)X =

P
1� i;j � N ui;j vi;j and the norm :

kukX =
p

(u; u)X .
If u 2 X , than r u is a vector in Y given by :
(r u) i;j = (( r u)1

i;j ; (r u)2
i;j )

The discrete total variation of u is then given by :

J (u) =
X

1� i;j � N

j(r u) i;j j

We also introduce a discrete version of the divergence. We de�ne it as in the
continuous case :

div = �r �

where r � is the adjoint of r : i.e., for all p 2 Y and u 2 X ,

(� div p; u)X = ( p; r u)Y
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Discrete G space

De�nition :

G = f v 2 X = 9g 2 Y such that v = div ( g)g

and if v 2 G :

kvkG = inf fk gk1 = v = div ( g);

g = ( g1; g2) 2 Y;jgi;j j =
q

(g1
i;j )2 + ( g2

i;j )2
o

where kgk1 = max i;j jgi;j j.
Moreover, we denote :

G� = f v 2 G = kvkG � � g
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Properties

Proposition :

J (u) = sup
v2 G1

(u; v)X

and

kvkG = sup
J (u) � 1

(u; v)X

In particular, one has J � (v) = � G1 (v) where J � (v) = sup (( u; v)X � J (u)) and

� G1 (v) =

8
<

:
0 if v 2 G1

+ 1 otherwise

Proposition : G can also be written :

X 0 = f v 2 X =
X

i;j

vi;j = 0g
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Chambolle's projection algorithm

A. Chambolle has proposed an e�cient algorithm to compute PG � (f ), the
orthogonal projection of f on G� (MIA 2002, JMIV 2004).
We want to solve the problem :

min
�

k� div ( p) � f k2
X = p 2 X � X ; jpi;j j � 1 8i; j = 1 ; : : : ; N

	

Algorithm (�xed point) :

p0 = 0

pn +1
i;j =

pn
i;j + � (r (div ( pn ) � f=� )) i;j

1 + � j(r (div ( pn ) � f=� )) i;j j

Su�cient condition for the algorithm to converge :
Theorem : If � � 1=8, then � div ( pn ) converges toPG � (f ) when n ! + 1 .
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Variant of Chambolle's projection algorithm

min
�

k� div ( p) � f k2
X = p 2 X � X ; jpi;j j � 1 8i; j = 1 ; : : : ; N

	

Algorithm (projected gradient) : (Chambolle 2004)

p0 = 0

pn +1
i;j =

pn
i;j + � (r (div ( pn ) � f=� )) i;j

max
�

1; pn
i;j + � j(r (div ( pn ) � f=� )) i;j j

	

It can be proved that (Aujol 2008, Duval et al 2008) :
Theorem : If � � 1=4, then � div ( pn ) converges toPG � (f ) when n ! + 1 .

In practice, for typical image restoration problem, it appears to be 30% faster
than the original projection algorithm.

Remark : Faster but more complicated algorithms (based on Nesterov's
schemes) can be used to compute the projection (Weiss et al 2006, Aujol 2008).
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Solving ROF

Chambolle's projection algorithm can be used to minimize the total variation
(MIA 2002, JMIV 2004).

inf
u2 BV

�
J (u) +

1
2�

kf � uk2
2

�

Proposition : The solution of the above problem is given by :

u = f � PG � (f )

where P is the orthogonal projection on G� .

We recall that :

G� = f v 2 G=kvkG � � g
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u + v model ( A2BC)

(Aujol et al 2003)
We want to solve :

inf
(u;v )2 BV � G �

�
J (u) +

1
2�

kf � u � vk2
2

�

where

G� = f v 2 G=kvkG � � g

The parameter � controls the L 2 norm of the residual f � u � v. The parameter
� controls the jj :jjG norm of v.
Remark :
It is a way to approximate the T V � G model :

inf
u

J (u) + � kf � ukG
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Principle

We solve the two following problems :
� v �xed, we solve

inf
u2 BV

�
J (u) +

1
2�

kf � u � vk2
2

�
(1)

� u �xed, we solve

inf
v2 G �

kf � u � vk2
2 (2)

The solution of (1) is given by :

û = f � v � PG � (f � v)

where PG � is the orthogonal projection on G� .
The solution of (2) is given by :

v̂ = PG � (f � u)
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Example :
Zebra ( � = 1 , � = 50 and � = 100)

Original image ( f ) BV component ( u) BV component ( u)

Reconstructed image ( u + v) v + 150 :0 v + 150 :0
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Comparison with the Rudin-Osher-Fatemi
model :

Barbara ( � = 1 and � = 50)
Original image ( f ) u u (ROF)

Reconstructed image ( u + v) (v + 150 :0) v + 150 :0 (ROF)
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Besov spaces

De�nition : _B 1
1;1 is the usual homogeneous Besov space. Let j;k an or-

thonormal basis of smoothed wavelets with compact support,then _B 1
1;1 is the

subspace ofL 2(R2) of functions f such that :
X

j 2 Z

X

k2 Z2

jcj;k j < + 1

where the cj;k are the wavelet coe�cients of f .

De�nition : The dual space of _B 1
1;1 is the Banach spaceE = _B 1

� 1;1 . It is
characterized by the fact that the wavelet coe�cients of a generalized function
in E = _B 1

� 1;1 are in l1 (Z � Z2).

Remark : We have
_BV � G � E
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Another decomposition model

(Meyer 2001)

inf
u+ v= f

(J (u) + � kvkE )

(Aujol-Chambolle 2004)

inf
(u;v )2 X 2

�
J (u) + B � (v=� ) +

1
2�

kf � u � vk2
�

where

B (w) = kwk _B 1
1; 1

and thus

B � (v=� ) = � E � (v)

with

E � = f v = kvkE � � g
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Convex analysis
Proposition : (Chambolle et al, IEEE TIP 1998)
The solution of the functional :

inf
u

kf � uk2 + 2 �B (u)

is given by u = WST(f; � ), where WST(f; � ) is the wavelet soft thresholding
of f (with threshold value � ).

Proposition :
The two following statements are equivalent :

1. ~u is a solution of

min
u

�
B (u) +

1
2�

kf � uk2
2

�

2. ~v = f � ~u is a solution of

min
v

�
B � (v=� ) +

1
2�

kf � vk2
2

�

Hence the solution of 2. is given by ~v = f � WST(f; � ).
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Minimization

We consider the two following problems :
� v �xed, we compute u as the solution of :

inf
u2 X

�
J (u) +

1
2�

kf � u � vk2
X

�
(1)

� u �xed, we compute v as the solution of :

inf
v2 E �

kf � u � vk2
X (2)

The solution of (1) is given by : û = f � v � PG � (f � v).
And the solution of (2) is given by : v̂ = PE � (f � u) = f � u � WST(f � u; � ),
where WST(f � u; � ) corresponds to the wavelet soft thresholding of f � u
(with threshold value � ).
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Comparison between the G and the E norm

Noisy image f (� = 35) Restored image Restored image

(E norm) ( G norm)

Original image Noise Noise
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u + v + w model

(Aujol-Chambolle 2004)
We propose to minimize the following functional :

inf
(u;v;w )2 X 3

F (u; v; w)

where

F (u; v; w) = J (u) + J �
�

v
�

�
+ B �

� w
�

�
+

1
2�

kf � u � v � wk2

We recall that :

J � (v=� ) = � G � (v)

B � (w=� ) = � E � (w)
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Principle

� v and w �xed, u solution of :

inf
u2 X

�
J (u) +

1
2�

kf � u � v � wk2
X

�
(1)

� u and w �xed, v solution of :

inf
v2 G �

kf � u � v � wk2
X (2)

� u and v �xed, w solution of :

inf
w2 E �

kf � u � v � wk2
X (3)

The solution of (1) is given by : û = f � v � w � PG � (f � v � w).
The solution of (2) is given by : v̂ = PG � (f � u � w).
The solution of (3) is given by : ŵ = PE � (f � u � v) = f � u � v � WST(f �
u � v; � ).
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Results

Original image Noisy image ( � = 35) u + v

u v + 150 :0 w + 150

A simple case ( � = 0 :5, � = 120 , � = 1 :0, Haar)
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Comparison

u v + 150 :0 w + 150

u v + 150 :0 w + 150

First line : u + v + w algorithm. Second line : Gaussian �ltering.
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Results

Original image Noisy image ( � = 20)

Barbara Image I
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Results

u u + v

Barbara Image II ( � = 1 :0, � = 30 , � = 0 :6, Daub8)
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Results

v + 150 :0 w + 150

Barbara image III ( � = 1 :0, � = 30 , � = 0 :6, Daub8)
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Negative Sobolev norm

H = W 1;2 = f f 2 L 2 = r f 2 L 2g

H � 1 = W � 1;2 =
�

W 1;2
0

� 0

We set :

kukH = kr ukY =

0

@
X

1� i;j � N

jr ui;j j2

1

A

1=2

The associated polar semi-norm is :

kvkH � 1 = sup
kukH =1

(v; u)X

One can show that

kukH � 1 =
p

(u; � � � 1u)X

(easy to compute with the discrete Fourier transform)
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Osher-Sole-Vese model

Osher-Sole-Vese have introduced the following functional(MMS 2003) :

inf
u

�
J (u) +

1
2�

kf � uk2
H � 1

�

They compute the associated Euler-Lagrange equation, and solve a fourth order
PDE.
Remark : No residual in this model.
Other approaches :Daubeshie-Teschke 04 (wavelets based algorithm), Aujol-
Chambolle 04 (projection algorithm), . . .
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Denoising

Noisy image f (� = 35) Restored image ( G) Noise (G)

Restored image (OSV) Noise (OSV)

J.F. Aujol 37



Image decomposition

Original image f u (G) v (G)

uOSV vOSV

J.F. Aujol 38



TV-Hilbert

Aujol-Gilboa 2004 :

inf
u

�
J (u) +

�
2

kf � uk2
H

�

K is a linear positive symmetric operator, and

hf; g i H = hf; Kg i L 2

1. When K = Id , then H = L 2 =) ROF model

2. When K = � � � 1, then H = H � 1 =) OSV model

J.F. Aujol 39



Projection algorithm

inf
u

�
J (u) +

�
2

kf � uk2
H

�
(1)

It is possible to adapt Chambolle's projection algorithm to this functional
(Aujol-Gilboa 2004).
Algorithm :

p0 = 0

and

pn +1
i;j =

pn
i;j + � (r (K � 1div ( pn ) � �f )) i;j

1 + � j(r (K � 1div ( pn ) � �f )) i;j j

Theorem : If � � 1
8kK � 1 kL 2

, then 1
� K � 1div pn ! v̂ as n ! 1 , and f �

1
� K � 1div pn ! û as n ! 1 , where û is the solution of problem (1) and
v̂ = f � û.
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Filtering

K K � 1

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

f

|K
|

D-1

L2 (I)

Gabor-1

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

f

|K
-1

|

D

L2 (I)
Gabor

Fig. 1 { The kernel K and its inverseK � 1 for the OSV, ROF and the proposed
TV-Gabor model.
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Texture

Textures are periodic elements.
=) A simple way to characterize a texture is by its main frequency and direc-
tion.
=) This naturally leads us to consider Gabor functions :
1D Gabor function (frequency � , bandwidth � ) :

g(x) = cos (2� � x)
1

p
2�� 2

exp
�

� x2

2� 2

�

2D : considerg(x)g(y) or a rotationally symmetric Gabor function :

g(x; y) = cos
�

2� �
p

x2 + y2
� 1

p
2�� 2

exp
�

� x2 � y2

2� 2

�
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A simple example

f corr( u; v )

0 5 10 15 20

0.05

0.1

0.15

0.2

Iterations

C
or

r(
u,

v)

u v
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Results (I)

f
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Results (II)
T V -Gabor, u v

TV- L 2 , u v
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Washington (I)

f
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Washington (II)
u (T V -Gabor) v (T V -Gabor)

u (T V � L 2 ) v (T V � L 2 )
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Washington (III)

4v (T V -Gabor) 4 v (T V � L 2 )
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Parameter selection problem
Aujol et al 2006

EStructure (u) + � ET exture (v); f = u + v;

=) solution (u� ; v� ).
Problem : Find the right parameter � .
=) Very di�cult problem (no � 2 information as in the constrained denoising
problem).
Simplest suggestion (based on Mrazek work on image denoising) :
Assumption : The texture and the structure components of an image are not
correlated.

� � = argmin � (corr(u� ; v� )) :

For the T V � L 2 model :

0 � corr(u� ; v� ) � 1; 8� � 0:

We do not claim that we pick the best possible parameter, but agoodone.
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A simple image

Original image uROF uA 2 BC

corr( u; v ) vROF vA 2 BC

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

Iterations

C
or

r(
u,

v)
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Barbara (I)

0 10 20 30 40 50

0.15

0.2

0.25

Iterations
C

or
r(

u,
v)
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Barbara (II)

uROF uA 2 BC
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Barbara (III)

vROF vA 2 BC
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TV � L1

Nikolova 2002 : relaxation algorithm

inf
(u;v )2 BV � L 1 =f = u+ v

� Z p
jr uj2 + � 2 + � kvkL 1

�

Chan-Esedoglu 2004 : PDE based algorithm

inf
u

� Z q
jr uj2 + � 2

1 + �
Z q

(f � u)2 + � 2
2

�

Aujol-Gilboa 2005 : projection algorithm

inf
u;v

�
J (u) +

1
2�

kf � u � vk2
L 2 + � kvkL 1

�

Minimisation of the exact energy :

inf
(u;v )2 BV � L 1 =f = u+ v

� Z
jr uj + � kvkL 1

�

* Yinn et al 2006 (second order cone programming based algorithm)
* Darbon-Sigelle 2006 (graph-cut algorithm, clearly the fastest algorithm to
solve this problem)
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Comparison

u (T V � G) u (T V � L 1 )

v (T V � G) v (T V � L 1 )
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Conclusions

Image decompostion has been the subject of many studies during the last 6
past years. Just look at the UCLA CAM reports web page !

Luminita Vese (UCLA) and her students have proposed many other di�erent
functional analysis spaces to model textures (as originally suggested by Meyer
in his book) : BMO , Besov spaces, negative Sobolev spaces, . . .
It is not clear which one is the best choice.

Experiments indicate that L 1 might be a better choice . . .(spatial scale more
relevant than temporal scale ?)

J-L. Stark and his collaborators have studied the decomposition problem from
a sparsepoint of view. Instead of looking for a norm which is small for textures,
there are interested in a representation which is sparse fortextures.
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Future prospects

Future prospects :

Almost no work dealing with the problem of parameter selection.

No work dealing with the problem of spatial adaptivity.

Almost no work dealing with the problem of frequential adaptivity.

Developping the potential applications (inpainting, compression, classi�cation)

Questions ?
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