Testing Fractal Connectivity in Multivariate Long Memory Processes

H. WENDT⁽¹⁾A. SCHERRER⁽¹⁾, P. ABRY⁽¹⁾, S. ACHARD⁽²⁾

- Applications (Biology, Medecine, Environment, Telecomm.) :
 - large systems,
 - out of equilibrium,
 - dynamical.
- Analyses :
 - numerous censors,
 - heterogeneous censors,
- \Rightarrow MultiVariate (MultiComponent) Data
 - how much information shared between component?
 - correlated and redundant information?
 - Long memory (long range dependence) :
 - slow (algebraic) decrease of correlations in time,
 - LM observed independently on each Component,
 - a same and single phenomenon?
 - or different causes for LM?

- Applications (Biology, Medecine, Environment, Telecomm.) :
 - large systems,
 - out of equilibrium,
 - dynamical.
- Analyses :
 - numerous censors,
 - heterogeneous censors,
- ⇒ MultiVariate (MultiComponent) Data
 - how much information shared between component?
 - correlated and redundant information?
 - Long memory (long range dependence) :
 - slow (algebraic) decrease of correlations in time,
 - LM observed independently on each Component,
 - a same and single phenomenon?
 - or different causes for LM?

- Applications (Biology, Medecine, Environment, Telecomm.) :
 - large systems,
 - out of equilibrium,
 - dynamical.
- Analyses :
 - numerous censors,
 - heterogeneous censors,
- ⇒ MultiVariate (MultiComponent) Data
 - how much information shared between component?
 - correlated and redundant information?
 - Long memory (long range dependence) :
 - slow (algebraic) decrease of correlations in time,
 - LM observed independently on each Component,
 - a same and single phenomenon?
 - or different causes for LM?

- Applications (Biology, Medecine, Environment, Telecomm.) :
 - large systems,
 - out of equilibrium,
 - dynamical.
- Analyses :
 - numerous censors,
 - heterogeneous censors,
- ⇒ MultiVariate (MultiComponent) Data
 - how much information shared between component?
 - correlated and redundant information?
 - Long memory (long range dependence) :
 - slow (algebraic) decrease of correlations in time,
 - LM observed independently on each Component,
 - a same and single phenomenon?
 - or different causes for LM?

Long Memory

• Long Memory :

- Y 2nd order stationary process :

 $\begin{array}{l} \text{Spectrum}: \Gamma_{Y}(f) \sim \mathcal{C}_{\Gamma} |f|^{-\gamma}, \, |f| \rightarrow 0, \, 0 < \gamma < 1, \\ \text{Covariance}: \gamma_{Y}(\tau) \sim \mathcal{C}_{\gamma} |\tau|^{-(1-\gamma)}, \, |\tau| \rightarrow \infty \end{array}$

- Self-similarity :
 - · *H*-ss : {*X*(*t*), *t* ∈ \mathcal{R} } $\stackrel{idd}{=}$ {*a*^{*H*}*X*(*t*/*a*), *t* ∈ \mathcal{R} }, \forall *a* > 0 if *X* is *H*-ss, with stationary increments, *Y*(*k*) = *X*(*k* + 1) − *X*(*k*) if 1/2 < *H* < 1, then *Y* is Long Memory with γ = 2*H* − 1.
 - Fractional Brownian motion $B_H(t)$: Gaussian *H*-ss, with stationary increments

Long Memory

- Long Memory :
 - Y 2nd order stationary process :

 $\begin{array}{l} \text{Spectrum}: \Gamma_{Y}(f) \sim \mathcal{C}_{\Gamma} |f|^{-\gamma}, \, |f| \rightarrow 0, \, 0 < \gamma < 1, \\ \text{Covariance}: \gamma_{Y}(\tau) \sim \mathcal{C}_{\gamma} |\tau|^{-(1-\gamma)}, \, |\tau| \rightarrow \infty \end{array}$

- Self-similarity :
 - H-ss : { $X(t), t \in \mathcal{R}$ } $\stackrel{fdd}{=}$ { $a^H X(t/a), t \in \mathcal{R}$ }, $\forall a > 0$ if X is H-ss, with stationary increments, Y(k) = X(k+1) - X(k)if 1/2 < H < 1, then Y is Long Memory with $\gamma = 2H - 1$.
 - Fractional Brownian motion $B_H(t)$: Gaussian *H*-ss, with stationary increments

Long Memory

- Long Memory :
 - Y 2nd order stationary process :

 $\begin{array}{l} \text{Spectrum}: \Gamma_{Y}(f) \sim \mathcal{C}_{\Gamma} |f|^{-\gamma}, \, |f| \rightarrow 0, \, 0 < \gamma < 1, \\ \text{Covariance}: \gamma_{Y}(\tau) \sim \mathcal{C}_{\gamma} |\tau|^{-(1-\gamma)}, \, |\tau| \rightarrow \infty \end{array}$

- Self-similarity :
 - H-ss : { $X(t), t \in \mathcal{R}$ } $\stackrel{fdd}{=}$ { $a^H X(t/a), t \in \mathcal{R}$ }, $\forall a > 0$ if X is H-ss, with stationary increments, Y(k) = X(k+1) - X(k)if 1/2 < H < 1, then Y is Long Memory with $\gamma = 2H - 1$.
 - Fractional Brownian motion *B_H*(*t*) : Gaussian *H*-ss, with stationary increments

Bivariate Long Memory

• $\mathbf{Z} = {\{\mathbf{Z}(t)\}_{t \in \mathbb{Z}} = {[X(t), Y(t)]}_{t \in \mathbb{Z}}}$

bivariate long memory process iff

N-th order increment process : $\tilde{\mathbf{Z}}(t) = \delta^{N} \mathbf{Z}(t)$:

- is stationary,
- has spectral and inter-spectral densities ($-\pi \leq f \leq \pi$) :

$$\begin{split} \Gamma_{\tilde{X}}(f) &= \Omega_X \left| 1 - e^{-jf} \right|^{-2\alpha_X} \Gamma_X^*(f) \\ \Gamma_{\tilde{Y}}(f) &= \Omega_Y \left| 1 - e^{-jf} \right|^{-2\alpha_Y} \Gamma_Y^*(f) \\ \Gamma_{\tilde{X}\tilde{Y}}(f) &= \Omega_{12} \left(1 - e^{-jf} \right)^{-\alpha_1} \left(1 - e^{jf} \right)^{-\alpha_2} \Gamma_{12}^*(f). \end{split}$$

- Ω . positive multiplicative factors,
- $\alpha_{(\cdot)} \in [0, 0.5]$, - $\Gamma^*_{(\cdot)}(f)$ non-negative, symmetric, with limit 1 at $|f| \rightarrow 0$, hence modeling *short memory*.

Fractal Connectivity

- Coherence Function : $C_{\tilde{X}\tilde{Y}}(f) = \frac{|\Gamma_{\tilde{X}\tilde{Y}}(f)|}{\sqrt{\Gamma_{\tilde{X}}(f)\Gamma_{\tilde{Y}}(f)}}$
- Bivariate long memory :
 - $$\begin{split} & C_{\tilde{X}\tilde{Y}}(f) \sim_{f \to 0} C_0 |f|^{-(\alpha_{XY} \alpha_X \alpha_Y)} \\ & \text{with } \alpha_{XY} = \alpha_1 + \alpha_2, \\ & \text{with } C_0 = |\Omega_{12}| / \sqrt{\Omega_{\tilde{X}} \Omega_{\tilde{Y}}}. \end{split}$$
- Positive definite :

$$0 \leq C_{\tilde{X}\tilde{Y}}(f) \leq 1 \Rightarrow \alpha_{XY} \leq \alpha_X + \alpha_Y.$$

• Fractal Connectivity :

$$C_0 \neq 0$$
 and $\alpha_{XY} = \alpha_X + \alpha_Y$.

Wavelets and Long Memory

- Wavelets :
 - Mother-Wavelet ψ : Oscillating pattern,
 - Number of vanishing moments N_{ψ} :
 - $\forall k = 0, ..., N 1,$ $\int_{\mathcal{R}} t^k \psi_0(t) dt \equiv 0 \text{ and } \int_{\mathcal{R}} t^N \psi_0(t) dt \neq 0.$

- Basis :
$$\{\psi_{j,k}(t) = 2^{-j/2}\psi_0(2^{-j}t-k)\},\$$

- Coefficients of $Y : d_Y(j,k) = \langle \psi_{j,k}, Y \rangle$
- Wavelets and 2nd order bivariate stationary processes :
 E|d_X(j, k)|² = ∫_R, Γ_X(f)2^j|Ψ̃₀(2^jf)|²df,
- Wavelets and LRD :
 - $\mathsf{E}|d_Y(j,k)|^2 \sim C2^{j(2H-1)}$ for $2^j \to +\infty$,
 - $S(j) = \frac{1}{n_i} \sum_k |d_Y(j,k)|^2$,
 - Looscale Diagram : log_ S(i) vs. log_ $2^{j} i$

Wavelets and Long Memory

- Wavelets :
 - Mother-Wavelet ψ : Oscillating pattern,
 - Number of vanishing moments N_{ψ} :
 - $\forall k = 0, ..., N 1,$ $\int_{\mathcal{R}} t^k \psi_0(t) dt \equiv 0 \text{ and } \int_{\mathcal{R}} t^N \psi_0(t) dt \neq 0.$

- Basis :
$$\{\psi_{j,k}(t) = 2^{-j/2}\psi_0(2^{-j}t-k)\},\$$

- Coefficients of $Y : d_Y(j,k) = \langle \psi_{j,k}, Y \rangle$
- Wavelets and 2nd order bivariate stationary processes :
 - $\mathbf{E}|d_X(j,k)|^2 = \int_{\mathcal{R}} \Gamma_X(f) 2^j |\tilde{\Psi}_0(2^j f)|^2 df$
- Wavelets and LRD :
 - $\mathsf{E}|d_Y(j,k)|^2 \sim C2^{j(2H-1)}$ for $2^j \to +\infty$,
 - $S(j) = \frac{1}{n_i} \sum_k |d_Y(j,k)|^2$,
 - Looscale Diagram : log_ S(i) vs. log_ $2^j i$

Wavelet Test for Fractal Connectivity

time (s)

Λ

Wavelets and Long Memory

- Wavelets :
 - Mother-Wavelet ψ : Oscillating pattern,
 - Number of vanishing moments N_{ψ} :
 - $\forall k = 0, ..., N 1,$ $\int_{\mathcal{R}} t^{k} \psi_{0}(t) dt \equiv 0 \text{ and } \int_{\mathcal{R}} t^{N} \psi_{0}(t) dt \neq 0.$
 - Basis : { $\psi_{j,k}(t) = 2^{-j/2}\psi_0(2^{-j}t-k)$ },
 - Coefficients of $Y : d_Y(j,k) = \langle \psi_{j,k}, Y \rangle$
- Wavelets and 2nd order bivariate stationary processes :

-
$$\mathbf{E}|d_X(j,k)|^2 = \int_{\mathcal{R}} \Gamma_X(f) 2^j |\tilde{\Psi}_0(2^j f)|^2 df$$

Illustration : Internet Traffic

• Aggregated Count Times Series :

• Logscale Diagrams :

• A single Long Memory or different phenomena?

Wavelets and bivariate Long Memory

• Wavelets and 2nd order bivariate stationary processes :

-
$$\mathbf{E}|d_{\tilde{X}}(j,k)|^2 = \int_{\mathcal{R}} \Gamma_{\tilde{X}}(f) 2^j |\tilde{\Psi}_0(2^j f)|^2 df$$

- $\mathbf{E}|d_{\tilde{Y}}(j,k)|^2 = \int_{\mathcal{R}} \Gamma_{\tilde{Y}}(f) 2^j |\tilde{\Psi}_0(2^j f)|^2 df$
- $\mathbf{E} d_{\tilde{X}}(j,k) d_{\tilde{Y}}(j,k) = \int_{\mathcal{R}} \Gamma_{\tilde{X},\tilde{Y}}(f) 2^j |\tilde{\Psi}_0(2^j f)|^2 df.$
- Wavelets and bivariate Long Memory :

if $N_{\psi} > N$, and when $2^j \to +\infty$,

-
$$\mathsf{E}|d_{\widetilde{x}}(j,k)|^2 \sim c_X 2^{2j(\alpha_X+N)},$$

-
$$\mathbb{E}|d_{\tilde{v}}(j,k)|^2 \sim c_X 2^{2j(\alpha_Y+N)}$$
,

-
$$\mathsf{E}d_X(j,k)d_Y(j,k) \sim c_{XY}2^{2j(\alpha_{XY}+N)}$$

Wavelets and bivariate Long Memory

• Wavelets and 2nd order bivariate stationary processes :

-
$$\mathbf{E}|d_{\tilde{X}}(j,k)|^2 = \int_{\mathcal{R}} \Gamma_{\tilde{X}}(f) 2^j |\tilde{\Psi}_0(2^j f)|^2 df$$

-
$$\mathbf{E}|d_{\tilde{Y}}(j,k)|^2 = \int_{\mathcal{R}} \Gamma_{\tilde{Y}}(f) 2^j |\tilde{\Psi}_0(2^j f)|^2 df$$

- $\mathbf{E} d_{\tilde{X}}(j,k) d_{\tilde{Y}}(j,k) = \int_{\mathcal{R}} \Gamma_{\tilde{X},\tilde{Y}}(f) 2^j |\tilde{\Psi}_0(2^j f)|^2 df.$
- Wavelets and bivariate Long Memory :

if $N_{\psi} > N$, and when $2^{j} \rightarrow +\infty$,

-
$$\mathsf{E}|d_{\widetilde{X}}(j,k)|^2 \sim c_X 2^{2j(lpha_X+N)},$$

-
$$\mathsf{E}|d_{\tilde{v}}(j,k)|^2 \sim c_X 2^{2j(\alpha_Y+N)}$$
,

-
$$\mathsf{E}d_X(j,k)d_Y(j,k) \sim c_{XY}2^{2j(\alpha_{XY}+N)}$$

Wavelets and Fractal Connectivity

• Wavelet Coherence Function :

 $\gamma_{XY}(2^j) = \mathbf{E}d_X(j,k)d_Y(j,k)/\sqrt{\mathbf{E}d_X(j,k)^2\mathbf{E}d_Y(j,k)^2}$

• Bivariate long memory :

 $\begin{array}{l} \gamma_{XY}(\mathbf{2}^{j}) \simeq \gamma_{0}\mathbf{2}^{j(\alpha_{XY}-\alpha_{X}-\alpha_{Y})}, \ \mathbf{2}^{j} \to +\infty, \\ \text{with } \alpha_{XY} = \alpha_{1} + \alpha_{2}, \\ \text{with } \gamma_{0} = \mathbf{c}_{XY}/\sqrt{\mathbf{c}_{X}\mathbf{c}_{Y}}. \end{array}$

Fractal Connectivity :

$$\gamma_0 \neq 0$$
 and $\alpha_{XY} = \alpha_X + \alpha_Y$.

Wavelets and Fractal Connectivity

• Wavelet Coherence Function :

 $\gamma_{XY}(2^j) = \mathbb{E}d_X(j,k)d_Y(j,k)/\sqrt{\mathbb{E}d_X(j,k)^2\mathbb{E}d_Y(j,k)^2}$

• Bivariate long memory :

$$\gamma_{XY}(2^j) \simeq \gamma_0 2^{j(\alpha_{XY} - \alpha_X - \alpha_Y)}, \ 2^j \to +\infty,$$

with $\alpha_{XY} = \alpha_1 + \alpha_2,$
with $\gamma_0 = c_{XY}/\sqrt{c_X c_Y}.$

• Fractal Connectivity :

$$\gamma_0 \neq 0$$
 and $\alpha_{XY} = \alpha_X + \alpha_Y$.

Wavelets and Fractal Connectivity : Estimation

• Estimation :

$$E|\widehat{d_X(j,k)}|^2 = S_X(2^j) = \frac{1}{n_j} \sum_{k=1}^{n_j} d_X(j,k)^2,$$

$$E|\widehat{d_Y(j,k)}|^2 = S_Y(2^j) = \frac{1}{n_j} \sum_{k=1}^{n_j} d_Y(j,k)^2,$$

$$Ed_X(\widehat{j,k)}d_Y(j,k) = S_{X,Y}(2^j) = \frac{1}{n_j} \sum_{k=1}^{n_j} d_X(j,k)d_Y(j,k).$$

• Wavelet Coherence Function :

$$\hat{\gamma}_{XY}(2^j) = \frac{S_{XY}(2^j)}{\sqrt{S_X(2^j)S_Y(2^j)}}$$

- Bivariate long memory : $\hat{\gamma}_{XY}(2^j) \simeq \hat{\gamma}_0 2^{j(\alpha_{XY} - \alpha_X - \alpha_Y)}$
- Fractal Connectivity :

$$\hat{\gamma}_0 \neq 0$$
 and $\alpha_{XY} - \alpha_X - \alpha_Y = 0$.

Wavelets and Fractal Connectivity : Estimation

• Estimation :

$$E|\widehat{d_X(j,k)}|^2 = S_X(2^j) = \frac{1}{n_j} \sum_{k=1}^{n_j} d_X(j,k)^2,$$

$$E|\widehat{d_Y(j,k)}|^2 = S_Y(2^j) = \frac{1}{n_j} \sum_{k=1}^{n_j} d_Y(j,k)^2,$$

$$Ed_X(\widehat{j,k)}d_Y(j,k) = S_{X,Y}(2^j) = \frac{1}{n_j} \sum_{k=1}^{n_j} d_X(j,k)d_Y(j,k).$$

• Wavelet Coherence Function :

$$\hat{\gamma}_{XY}(2^{j}) = \frac{S_{XY}(2^{j})}{\sqrt{S_{X}(2^{j})S_{Y}(2^{j})}}$$

- Bivariate long memory : $\hat{\gamma}_{XY}(2^j) \simeq \hat{\gamma}_0 2^{j(\alpha_{XY} - \alpha_X - \alpha_Y)}$
- Fractal Connectivity :

$$\hat{\gamma}_0 \neq 0$$
 and $\alpha_{XY} - \alpha_X - \alpha_Y = 0$.

Wavelets and Fractal Connectivity : Estimation

• Wavelet Coherence Function :

$$\hat{\gamma}_{XY}(2^{j}) = \frac{S_{XY}(2^{j})}{\sqrt{S_{X}(2^{j})S_{Y}(2^{j})}}$$

- Bivariate long memory : $\hat{\gamma}_{XY}(2^j) \simeq \hat{\gamma}_0 2^{j(\alpha_{XY} - \alpha_X - \alpha_Y)}$
- Fractal Connectivity :

$$\hat{\gamma}_0 \neq 0$$
 and $\alpha_{XY} - \alpha_X - \alpha_Y = 0$.

Illustration : Internet Traffic

• Aggregated Count Times Series :

• Logscale Diagrams :

• A single Long Memory or different phenomena? $\hat{\alpha}_{XY} = \hat{\alpha}_X + \hat{\alpha}_Y$? $\alpha_{XY} - \alpha_X - \alpha_Y = 0$?

Wavelet Test for Fractal Connectivity

• Fisher *z*-transform :

$$\begin{split} \hat{z}_{XY}(2^{j}) &= \frac{1}{2} \ln \frac{1 + \hat{\gamma}_{XY}(2^{j})}{1 - \hat{\gamma}_{XY}(2^{j})} \stackrel{d}{\sim} \mathcal{N}(z_{XY}(2^{j}), \sigma(2^{j})), \\ z_{XY}(2^{j}) &= \frac{1}{2} \ln \frac{1 + \gamma_{XY}(2^{j})}{1 - \gamma_{XY}(2^{j})}, \\ \sigma^{2}(2^{j}) &= \frac{1}{n_{j} - 3}. \end{split}$$

• Null Hypothesis :

$$H_0: Z_{XY}(2^{J_1}) \equiv Z_{XY}(2^{J_1+1}) \equiv \cdots \equiv Z_{XY}(2^{J_2})$$

$$j \in [J_1, J_2], J = J_2 - J_1 + 1.$$

• Test Statistics :

$$\hat{V}_J = \sum_{j=J_1}^{J_2} rac{1}{\sigma^2(j)} \left(\hat{z}_{XY}(2^j) - rac{\sum_{j=J_1}^{J_2} \hat{z}_{XY}(2^j)/\sigma^2(2^j)}{\sum_{j=J_1}^{J_2} 1/\sigma^2(2^j)}
ight)^2$$

• Test Formulation :

Under H_0 , $\hat{V}_J \sim \chi^2_{(J-1)}$, Significance Level : α , Test : $\hat{d}_J = 1$ if $\hat{V}_J > C_{\chi}(\alpha)$, $\hat{d}_J = 0$ otherwise

Motivation

Wavelet Test for Fractal Connectivity

• Fisher *z*-transform :

$$\begin{split} \hat{z}_{XY}(2^{j}) &= \frac{1}{2} \ln \frac{1 + \hat{\gamma}_{XY}(2^{j})}{1 - \hat{\gamma}_{XY}(2^{j})} \stackrel{d}{\sim} \mathcal{N}(z_{XY}(2^{j}), \sigma(2^{j})), \\ z_{XY}(2^{j}) &= \frac{1}{2} \ln \frac{1 + \gamma_{XY}(2^{j})}{1 - \gamma_{XY}(2^{j})}, \\ \sigma^{2}(2^{j}) &= \frac{1}{n_{j} - 3}. \end{split}$$

• Null Hypothesis :

$$\begin{array}{l} H_0: \ z_{XY}(2^{J_1}) \equiv z_{XY}(2^{J_1+1}) \equiv \cdots \equiv z_{XY}(2^{J_2}) \\ j \in [J_1, J_2], \ J = J_2 - J_1 + 1. \end{array}$$

Test Statistics :

$$\hat{V}_J = \sum_{j=J_1}^{J_2} \frac{1}{\sigma^2(j)} \left(\hat{z}_{XY}(2^j) - \frac{\sum_{j=J_1}^{J_2} \hat{z}_{XY}(2^j)/\sigma^2(2^j)}{\sum_{j=J_1}^{J_2} 1/\sigma^2(2^j)} \right)^2$$

• Test Formulation :

Under H_0 , $\hat{V}_J \sim \chi^2_{(J-1)}$, Significance Level : α , Test : $\hat{d}_J = 1$ if $\hat{V}_J > C_{\chi}(\alpha)$, $\hat{d}_J = 0$ otherwise

Wavelet Test for Fractal Connectivity

• Fisher *z*-transform :

$$\begin{split} \hat{z}_{XY}(2^{j}) &= \frac{1}{2} \ln \frac{1 + \hat{\gamma}_{XY}(2^{j})}{1 - \hat{\gamma}_{XY}(2^{j})} \stackrel{d}{\sim} \mathcal{N}(z_{XY}(2^{j}), \sigma(2^{j})), \\ z_{XY}(2^{j}) &= \frac{1}{2} \ln \frac{1 + \gamma_{XY}(2^{j})}{1 - \gamma_{XY}(2^{j})}, \\ \sigma^{2}(2^{j}) &= \frac{1}{n_{j} - 3}. \end{split}$$

• Null Hypothesis :

$$\begin{array}{l} H_0: \ Z_{XY}(2^{J_1}) \equiv Z_{XY}(2^{J_1+1}) \equiv \cdots \equiv Z_{XY}(2^{J_2}) \\ j \in [J_1, J_2], \ J = J_2 - J_1 + 1. \end{array}$$

• Test Statistics :

$$\hat{V}_{J} = \sum_{j=J_{1}}^{J_{2}} rac{1}{\sigma^{2}(j)} \left(\hat{z}_{XY}(2^{j}) - rac{\sum_{j=J_{1}}^{J_{2}} \hat{z}_{XY}(2^{j})/\sigma^{2}(2^{j})}{\sum_{j=J_{1}}^{J_{2}} 1/\sigma^{2}(2^{j})}
ight)^{2}$$

• Test Formulation : Under H_0 , $\hat{V}_J \sim \chi^2_{(J-1)}$, Significance Level : α , Test : $\hat{d}_J = 1$ if $\hat{V}_J > C_{\chi}(\alpha)$, $\hat{d}_J = 0$ otherwis

.

Wavelet Test for Fractal Connectivity

• Fisher *z*-transform :

$$\begin{split} \hat{z}_{XY}(2^{j}) &= \frac{1}{2} \ln \frac{1 + \hat{\gamma}_{XY}(2^{j})}{1 - \hat{\gamma}_{XY}(2^{j})} \stackrel{d}{\sim} \mathcal{N}(z_{XY}(2^{j}), \sigma(2^{j})), \\ z_{XY}(2^{j}) &= \frac{1}{2} \ln \frac{1 + \gamma_{XY}(2^{j})}{1 - \gamma_{XY}(2^{j})}, \\ \sigma^{2}(2^{j}) &= \frac{1}{n_{j} - 3}. \end{split}$$

• Null Hypothesis :

$$\begin{array}{l} H_0: \ z_{XY}(2^{J_1}) \equiv z_{XY}(2^{J_1+1}) \equiv \cdots \equiv z_{XY}(2^{J_2}) \\ j \in [J_1, J_2], J = J_2 - J_1 + 1. \end{array}$$

• Test Statistics :

$$\hat{V}_J = \sum_{j=J_1}^{J_2} rac{1}{\sigma^2(j)} \left(\hat{z}_{XY}(2^j) - rac{\sum_{j=J_1}^{J_2} \hat{z}_{XY}(2^j)/\sigma^2(2^j)}{\sum_{j=J_1}^{J_2} 1/\sigma^2(2^j)}
ight)^2$$

• Test Formulation :

Under
$$H_0$$
, $\hat{V}_J \sim \chi^2_{(J-1)}$,
Significance Level : α ,
Test : $\hat{d}_J = 1$ if $\hat{V}_J > C_{\chi}(\alpha)$, $\hat{d}_J = 0$ otherwise

Test Statistics : Illustration on Synthetic Data :

• Test Statistics :
Under
$$H_0$$
, $\hat{V}_J \sim \chi^2_{(J-1)}$, central χ^2 ,
Under H_1 , $\hat{V}_J \sim \chi^2_{(J-1),V_J}$, Non central χ^2 with
 $V_J = \sum_{j=J_1}^{J_2} \frac{1}{\sigma^2(2^j)} \left(Z_{XY}(2^j) - \frac{\sum_{j=J_1}^{J_2} Z_{XY}(2^j)/\sigma^2(2^j)}{\sum_{j=J_1}^{J_2} 1/\sigma^2(2^j)} \right)^2$

• Monte Carlo Simulations : 1024 realizations,

Test Statistics : Illustration on Synthetic Data :

• Test Statistics :

Under
$$H_0$$
, $\hat{V}_J \sim \chi^2_{(J-1)}$, central χ^2 ,
Under H_1 , $\hat{V}_J \sim \chi^2_{(J-1),V_J}$, Non central χ^2 with
 $V_J = \sum_{j=J_1}^{J_2} \frac{1}{\sigma^2(2^j)} \left(z_{XY}(2^j) - \frac{\sum_{j=J_1}^{J_2} z_{XY}(2^j)/\sigma^2(2^j)}{\sum_{j=J_1}^{J_2} 1/\sigma^2(2^j)} \right)^2$

• Monte Carlo Simulations : 1024 realizations,

Fractal Connectivity in Multivariate Long Memory ? - P. Abry - Models and Images for Porous Media - Paris - Jan., 12-16, 2009 - 13/20

Illustration on Synthetic Data : H_0

• Under *H*₀, no short-memory :

Illustration on Synthetic Data : H_0

• Under *H*₀, with short-memory :

Fractal Connectivity in Multivariate Long Memory ? - P. Abry - Models and Images for Porous Media - Paris - Jan., 12-16, 2009 - 15/20

Performances on Synthetic Data

$\alpha_{XY} = 0.4 - [J_1, J_2] = [\cdot, 13] - 10\%$ significance											
Gaussian no short memory - $C_0 = 0.7$											
J_1	5	6	7	8	9	10	11				
\bar{d}_J	11.0	9.6	9.1	8.6	9.3	9.0	8.5				
\bar{p}_J	0.51	0.51	0.51	0.51	0.51	0.51	0.51				
Gaussian ARMA(1,1) - $C_0 = 0.7$											
J_1	5	6	7	8	9	10	11				
\bar{d}_J	66.7	33.5	21.5	14.4	11.2	8.9	9.2				
\bar{p}_J	0.12	0.29	0.38	0.45	0.50	0.51	0.52				

TAB.: **Scale range.** Mean test decisions (in %) and p-values for different values of J_1 , without (top) and with (bottom) Short Memory.

Illustration on Synthetic Data : H_1

• Under *H*₁, no short-memory :

Fractal Connectivity in Multivariate Long Memory ? - P. Abry - Models and Images for Porous Media - Paris - Jan., 12-16, 2009 - 17/20

Performances on Synthetic Data

[J ₁ , J ₂] = [7, 13] - 10% significance										
Test decisions - mean rejection rates \bar{d}_J (in %)										
α_{XY}	0.4	0.35	0.3	0.25	0.2					
$C_0 = 0.5$	9.4	22.7	42.9	54.9	56.8					
$C_0 = 0.7$	10.3	51.9	83.0	89.2	89.3					
$C_0 = 0.9$	8.7	99.3	99.9	99.9	99.9					
Mean p-value \bar{p}_J										
αχγ	0.4	0.35	0.3	0.25	0.2					
$C_0 = 0.5$	0.51	0.38	0.25	0.18	0.16					
$C_0 = 0.7$	0.50	0.18	0.06	0.04	0.04					
$C_0 = 0.9$	0.50	0.00	0.00	0.00	0.00					

TAB.: **Test performance.** Mean test decisions (top) and p-values (bottom) for different values of C_0 and α_{XY} .

Illustration : Internet Traffic

- Aggregated Count Times Series :
- No anomaly in Traffic :

- p- value is high, test does not reject,
- a single Long Memory in Bytes and Packets Counts,
- Anomalies in Traffic :
 - p- value is low, test rejects,
 - LM in Bytes and Packets Counts is no longer related.

- Fractal Connectivity?
 - A single mechanism controls long memory on all components of multivariate data?
- Long memory?
 - Think wavelet !
- Test for Fractal Connectivity ?
 - Wavelet Coherence Function,
 - Fisher z-Transform,
- Internet Traffic ?
 - Long memory in Packets and Bytes are related,
 - Anomalies breaks the single mechanism.
- References :
 - patrice.abry@ens-lyon.fr
 - perso.ens-lyon.fr/patrice.abry/

- Fractal Connectivity?
 - A single mechanism controls long memory on all components of multivariate data?
- Long memory?
 - Think wavelet !
- Test for Fractal Connectivity ?
 - Wavelet Coherence Function,
 - Fisher z-Transform,
- Internet Traffic ?
 - Long memory in Packets and Bytes are related,
 - Anomalies breaks the single mechanism.
- References :
 - patrice.abry@ens-lyon.fr
 - perso.ens-lyon.fr/patrice.abry/

- Fractal Connectivity?
 - A single mechanism controls long memory on all components of multivariate data?
- Long memory?
 - Think wavelet!
- Test for Fractal Connectivity ?
 - Wavelet Coherence Function,
 - Fisher z-Transform,
- Internet Traffic ?
 - Long memory in Packets and Bytes are related,
 - Anomalies breaks the single mechanism.
- References :
 - patrice.abry@ens-lyon.fr
 - perso.ens-lyon.fr/patrice.abry/

- Fractal Connectivity?
 - A single mechanism controls long memory on all components of multivariate data?
- Long memory?
 - Think wavelet!
- Test for Fractal Connectivity ?
 - Wavelet Coherence Function,
 - Fisher z-Transform,
- Internet Traffic ?
 - Long memory in Packets and Bytes are related,
 - Anomalies breaks the single mechanism.
- References :
 - patrice.abry@ens-lyon.fr
 - perso.ens-lyon.fr/patrice.abry/

- Fractal Connectivity?
 - A single mechanism controls long memory on all components of multivariate data?
- Long memory?
 - Think wavelet!
- Test for Fractal Connectivity ?
 - Wavelet Coherence Function,
 - Fisher z-Transform,
- Internet Traffic ?
 - Long memory in Packets and Bytes are related,
 - Anomalies breaks the single mechanism.
- References :
 - patrice.abry@ens-lyon.fr
 - perso.ens-lyon.fr/patrice.abry/