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Center for Astrophysics (CfA) survey

10,506 galaxies in the cone-shaped survey region, which
extends out to 135 megaparsecs in the northern hemisphere,
with the earth at the apex of the cone.
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Topology of SDSS 5

idence that their galaxy formation scenarios were on the
right track. In any case, a successful model must show
the universe in all its features, including topology.

4. SLOAN DIGITAL SKY SURVEY DATA

The SDSS (York et al. 2000; Stoughton et al. 2002;
Adelman-McCarthy et al. 2006) is a survey to explore the
large scale distribution of galaxies and quasars by using
a dedicated 2.5m telescope (Gunn et al. 2006) at Apache
Point Observatory. The photometric survey has imaged
roughly π steradians of the Northern Galactic Cap in
five photometric bandpasses denoted by u, g, r, i, and
z centered at 3551, 4686, 6165, 7481, and 8931Å, respec-
tively, by an imaging camera with 54 CCDs (Fukugita
et al. 1996; Gunn et al. 1998). The limiting magni-
tudes of photometry at a signal-to-noise ratio of 5 : 1
are 22.0, 22.2, 22.2, 21.3, and 20.5 in the five bandpasses,
respectively. The median width of the PSF is 1.4′′, and
the photometric uncertainties are 2% RMS (Abazajian
et al. 2004). See Ivezic et al (2004) for details of assess-
ment of photometric quality and Tucker et al. (2006) for
discussion of the monitor telescope pipeline employed for
calibration.

After image processing (Lupton et al. 2001; Stoughton
et al. 2002; Pier et al. 2003) and calibration (Hogg et al.
2001; Smith et al. 2002), targets are selected for spectro-
scopic follow-up observation. The spectroscopic survey
is planned to continue through 2008 as the Legacy sur-
vey and yield about 106 galaxy spectra. The spectra
are obtained by two dual fiber-fed CCD spectrographs.
The spectral resolution is λ/∆λ ∼ 1, 800, and the RMS
uncertainty in redshift is ∼ 30 km/s. Because of the me-
chanical constraint of using fibers, no two fibers can be
placed closer than 55′′ on the same tile. Mainly due to
this fiber collision constraint, incompleteness of the spec-
troscopy survey reaches about 6% (Blanton et al. 2003a)
in such a way that regions with high surface densities
of galaxies become less prominent even after adaptive
overlapping of multiple tiles. This angular variation of
sampling density is accounted for in our analysis.

The SDSS spectroscopy yields three major samples:
the main galaxy sample (Strauss et al. 2002), the lumi-
nous red galaxy sample (Eisenstein et al. 2001), and the
quasar sample (Richards et al. 2002). The main galaxy
sample is a magnitude-limited sample with apparent Pet-
rosian r-magnitude cut of mr,lim ≈ 17.77 which is the
limiting magnitude for spectroscopy. It has a further cut
in Petrosian half-light surface brightness µR50,limit = 24.5
mag/arcsec2. More details about the survey can be found
on the SDSS web site 5.

In our study, we use a subsample of SDSS galaxies
known as the New York University Value-Added Galaxy
Catalog (NYU-VAGC; Blanton et al 2005). This sam-
ple is a subset of the recent SDSS Data Release 5. One
of the products of the NYU-VAGC used here is Large-
Scale Structure sample DR4plus (LSS-DR4plus). We
use galaxies within the boundaries shown in Figure 1 of
Park et al. (2006), which improves the volume-to-surface
area ratio of the survey (important when smoothing).
There are also three stripes in the Southern Galactic Cap
observed by SDSS. Density estimation is difficult within
these narrow stripes, so we do not use them.

5 http://www.sdss.org/dr5/
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Fig. 1.— 50% high volume contours from three galaxy
surveys across three decades. From left to right, they are
Gott, Melott, & Dickinson (1986), Vogeley et al. (1994), and the
present work.

The remaining survey region covers 4, 471 deg2 (1.362
steradians). The primary sample of galaxies used here is
a subset of the LSS-DR4plus sample referred to as void0,
which is further selected to have apparent magnitudes in
the range 14.5 < r < 17.6 and redshifts in the range
0.001 < z < 0.5. These cuts yield a sample of 312,338
galaxies. The roughly 6% of targeted galaxies which do
not have a measured redshift due to fiber collisions are
assigned the redshift of their nearest neighbor.

Completeness of the SDSS is poor for bright galaxies
with r < 14.5 because of both the spectroscopic selection
criteria (which exclude objects with large flux within the
three arcsecond fiber aperture; the cut at r = 14.5 is an
empirical approximation of the completeness limit caused
by that cut) and the difficulty of obtaining correct pho-
tometry for objects with large angular size. For these
reasons, analyses of SDSS galaxy samples have typically
been limited to r > 14.5; using the magnitude limits of
the void0 sample, the range of absolute magnitude is
only 3.1 at a given redshift.

The comoving distance and redshift limits of the
volume-limited sample we analyze are determined from
absolute magnitude limits obtained by using the formula

mr,lim−Mr,lim = 5log((1+z)r)+25+K̄(z)+ Ē(z), (9)

where K̄(z) is the mean K-correction, Ē(z) is the mean
luminosity evolution correction, and r is the comoving
distance corresponding to redshift z. We adopt a flat
ΛCDM cosmology with density parameters ΩΛ = 0.73
and Ωm = 0.27 to convert redshift to comoving distance.
To determine sample boundaries we use a polynomial fit
to the mean K-correction,

K̄(z)=3.0084(z − 0.1)2 (10)
+1.0543(z − 0.1)− 2.5 log(1 + 0.1).

We apply the mean luminosity evolution correction given
by Tegmark et al. (2004), E(z) = 1.6(z − 0.1). The
rest-frame absolute magnitudes of individual galaxies are
computed in fixed bandpasses, shifted to z = 0.1, using
Galactic reddening corrections (Schlegel 1998) and K-
corrections as described by Blanton et al. (2003b). This





Mapping the brain









A general formulation



Excursion sets

Au ≡ Au(f , M)
∆
= {t ∈ M : f (t) ≥ u}



A more general setting

AD ≡ AD(f , M)
∆
= {t ∈ M : f (t) ∈ D}



Geometry
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Steiner’s Formula

1796-1863, Switzerland

For nice (e.g. convex) M ∈ RN , and N ′ ≥ N, the volume of

Tube(M, ρ) =
{

t ∈ RN′ : dN′(t,M) ≤ ρ
}

is, for ρ < ρc(M), given by,

λN′ (Tube(M, ρ)) =
N∑

j=0

ωN′−jρ
N′−jLj(M)

The Lj can be defined via the tube formula and are intrinsic.



λN′ (Tube(M, ρ)) =
N∑

j=0

ωN′−jρ
N′−jLj(M)
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Treat M as a Riemannian manifold

Curvature tensor:,

R(X ,Y ,Z ,W ) =
(
∇X∇Y Z −∇Y∇XZ −∇[X ,Y ]Z , W

)
Second fundamental form S

S(X ,Y )
∆
= ∇̂XY −∇XY = P⊥TM

(
∇̂XY

)
Scalar second fundamental form Sν

Sν(X ,Y )
∆
= (S(X ,Y ), ν)

(For ν a unit normal vector field on M)



LKC’s: The general case

Li (M) =
N∑

j=i

b j−i
2
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∫
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∫
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)
×1NtM(−νN−j) HN−j−1(dνN−j)Hj(dt)
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L0: The Euler-Poincaré characteristic

M ⊂ RN is nice, of dimension k, and “triangulisable”
α0 = number of vertices
α1 = number of lines
............................
...........................
αk = number of “full” simplices in the triangulation

L0(M) ≡ Euler characteristic of M is

ϕ(M) = α0 − α1 + · · ·+ (−1)dαN



3-d excursion sets

Meatball, EC=21

Sponge, EC=-15

Bubble, EC=1



Averaged geometry
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excursion sets



Excursion sets

Au ≡ Au(f , M)
∆
= {t ∈ M : f (t) ≥ u}



A 30-year old formula

Suppose f is Gaussian, mean zero, variance σ2, stationary, and
isotropic, with second spectral moment λ2 and M = [0,T ]N

Then:

E {L0 (Au)} = e−u2/2σ2
N∑

k=1

(N
k

)
T kλ

k/2
2

(2π)(k+1)/2σk
Hk−1

(u

σ

)
+ Ψ

(u

σ

)
.

where

Hn(x) = n!

bn/2c∑
j=0

(−1)jxn−2j

j! (n − 2j)! 2j
, n ≥ 0, x ∈ R

Ψ(x) =
1√
2π

∫ ∞
x

e−x2/2 dx



One dimension: A line of length T

E {L0 (Au(f , [0,T ])} = Ψ(u/σ) +
Tλ

1/2
2

2πσ
e−u2/2σ2

,



Two dimensions: A square of side length T

[
T 2λ2

(2π)3/2
u +

2Tλ
1/2
2

2π

]
e−u2/2 + Ψ(u).



Three dimensions: A cube of side length T

[
T 3λ

3/2
2

(2π)2
u2 +

3T 2λ2

(2π)3/2
u +

3Tλ
1/2
2

2π
− T 3λ

3/2
2

(2π)2

]
e−u2/2 + Ψ(u).



Center for Astrophysics (CfA) survey

10,506 galaxies in the cone-shaped survey region, which extends
out to 135 megaparsecs in the northern hemisphere, with the earth
at the apex of the cone.



The observed EC of the set of high-density regions of the CfA
Galaxy survey. Also shown is the expected EC for randomly
distributed galaxies with no structure; the CfA data has smaller EC
than expected, indicating less “blobs” and more clumping of
galaxies into clusters, strings, and “walls”.
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Fig. 7.— Genus curves with shaded 1σ error regions for the (a) 100 DH and (b) 50 MR samples, compared with SDSS and Gaussian
random phase.

of the sample one throws away because of closeness to the
edge will be diminished. This will approximately double
the effective volume of the sample and give us a still bet-
ter test. Also, studies with smoothing lengths of 10h−1

Mpc and 20h−1 Mpc will be possible with high precision
allowing more direct tests of the Gaussian random phase
hypothesis on scales where the galaxy formation effects
are less important.

It would be interesting to see N-body simulations cov-
ering larger volumes which would have more power at
large scales (because they would not be artificially cut
off at the box size). This would make for more accurate
modeling of the structure and frequency of occurrence of
structures like the Sloan Great Wall (Gott et al. 2005).

The results here suggest that in order to account for the
observed topology some changes in galaxy formation sce-
narios are called for. We look forward to improvements
in the N-body simulations. Of particular interest is how
well larger hydrodynamic simulations will perform when
compared with larger samples, and whether there will be
a convergence of predictions as both hydrodynamic and
merger tree, and dynamical halo occupation methods are
improved. Galaxy formation is not yet a solved problem
in cosmology and the 3D topology offers a strong test of
models which is independent of other measures.
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Excursion probabilities

P {supt∈M f (t) ≥ u}

∼ E {L0 (Au(f , M))}

lim inf
u→∞

u−2 log |P− E| ≥ 1

2
+

1

2σ2(f )



Observed and expected EC for the PET data and the expected EC
if there is no activation due to the linguistic task. In particular, at
u = 3.3 we expect an EC of 1, but we observe 4. At the 5% critical
value of u = 4.22, we expect 0.05 but we observe 2 components.



A more general result

AD ≡ AD(f , M)
∆
= {t ∈ M : f (t) ∈ D}

E {Lj(AD)} =

N−j∑
l=0

[
j + l

l

]
(2π)−j/2Lj+l(M)M(k)

l (D)



Non-Gaussian fields
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Now for the mathematics
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Gaussian tube formula
Gauss measure on Rk

γk(D)
∆
=

1

(2π)k/2

∫
D

e−‖x‖
2/2 dx

Gaussian tube formula

γk(Tube(D, ρ)) = γk(D) +
∑∞

j=1
ρj

j!M
γ
j (D)

E {Lj(AD)} =
∑N−j

l=0

[
j + l

l

]
(2π)−j/2Lj+l(M)M(k)

l (D)



Turn M into a Riemannian manifold with

gt(Xt ,Yt) = E {Xt ft · Yt ft}

Curvature tensor:,
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)
Second fundamental form S
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= ∇̂XY −∇XY = P⊥TM

(
∇̂XY

)
Scalar second fundamental form Sν

Sν(X ,Y )
∆
= (S(X ,Y ), ν)

(For ν a unit normal vector field on M)
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Kinematic fundamental formula
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Crofton’s formula on RN

∫
Graff(N,N−k)

Lj(M ∩ V ) dλN
N−k(V ) =

[
k + j

j

]
Lk+j(M)



Crofton’s formula on RN

∫
Graff(N,N−k)

Lj(M ∩ V ) dλN
N−k(V ) =

[
k + j

j

]
Lk+j(M)



A Gauss-Crofton formula

M a C 2, n-dimensional, Riemannian manifold

y1, . . . , yk Gaussian on M, matched to the metric

Define, for u ∈ Rk , the (random) submanifold

Du =
{

t ∈ M : y1
t = u1, . . . , y

k
t = uk

}
Take Zk ∈ Rk standard Gaussian independent of y

DZk
= {t ∈ M : yt = Zk}

E {Lj(M ∩ DZk
)} = (2π)−k/2 [k + j ]!

[j ]!
Lk+j(M)



About the proofs



Excursion probabilities

P {supt∈M f (t) ≥ u}

∼ E {L0 (Au(f , M))}

lim inf
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Mapping to the sphere

ft =
K∑

n=1

ξnϕn(t) = 〈ξ, ϕ(t)〉

1 = E
{
f 2
t

}
=

K∑
1

ϕ2
j (t) = ‖ϕ(t)‖

Map M into the sphere with

t → ϕ(t)

Then

g(x)
∆
= f

(
ϕ−1(x)

)
has covariance

E {g(x)g(y)} = 〈x , y〉
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One (Gaussian) case covers all !?!

t → ϕ(t)
∆
= (ϕ1(t), . . . , ϕK (t))
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Random Fields and Geometry

This monograph is devoted to a completely new approach to 

geometric problems arising in the study of random fields. The

groundbreaking material in Part III, for which the background is

carefully prepared in Parts I and II, is of both theoretical and practical

importance, and striking in the way in which problems arising in

geometry and probability are beautifully intertwined.

The three parts to the monograph are quite distinct. Part I presents

a user-friendly yet comprehensive background to the general theory

of Gaussian random fields, treating classical topics such as continuity

and boundedness, entropy and majorizing measures, Borell and

Slepian inequalities. Part II gives a quick review of geometry, both

integral and Riemannian, to provide the reader with the material

needed for Part III, and to give some new results and new proofs of

known results along the way. Topics such as Crofton 

formulae, curvature measures for stratified manifolds, critical point

theory, and tube formulae are covered. In fact, this is the only 

concise, self-contained treatment of all of the above topics, which

are necessary for the study of random fields. The new approach in

Part III is devoted to the geometry of excursion sets of random

fields and the related Euler characteristic approach to extremal

probabilities.

Random Fields and Geometry will be useful for probabilists and sta-

tisticians, and for theoretical and applied mathematicians who wish

to learn about new relationships between geometry and probability.

It will be helpful for graduate students in a classroom setting, or for

self-study. Finally, this text will serve as a basic reference for all

those interested in the companion volume of the applications of the

theory. These applications, to appear in a forthcoming volume, will

cover areas as widespread as brain imaging, physical oceanography,

and astrophysics.
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