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Back to the future
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The Nobel Prize in Physics 2006

"for their discovery of the blackbody form and anisotropy of the
cosmic microwave background radiation”
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rThe COBE Satellite
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DIRBE Solar Elongation 90° Maps: Mid-Infrared




DMR's Two Year CMB Anisotropy Result




Center for Astrophysics (CfA) survey

10,506 galaxies in the cone-shaped survey region, which
extends out to 135 megaparsecs in the northern hemisphere,

with the earth at the apex of the cone.
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Center for Astrophysics (CfA) survey

10,506 galaxies in the cone-shaped survey region, which

extends out to 135 megaparsecs in the northern hemisphere,
with the earth at the apex of the cone.




1986 1994 2006

100 Mpcrh

Fic. 1.— 50% high volume contours from three galaxy
surveys across three decades. From left to right, they are

Gott, Melott, & Dickinson (1986), Vogeley et al. (1994), and the
present work.






Mapping the brain












A general formulation



Excursion sets

|| >

{te M: f(t) > u}



A more general setting




Geometry
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Steiner's Formula

Avrxa

1796-1863, Switzerland
For nice (e.g. convex) M € RN, and N/ > N, the volume of
Tube(M, p) = {t e RV du(t,M) < p}

is, for p < pc(M), given by,

Ay (Tube(M, p)) ZwN/_Jp =L (M)

The £; can be defined via the tube formula and are intrinsic.
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Treat M as a Riemannian manifold

Curvature tensor:,

R(X,Y,Z,W) = (VxVyZ -VyVxZ—VixyZ, W)

Second fundamental form S

S(X,Y) & UxY —VxY = Pk, (ﬁxy)

Scalar second fundamental form S,

SUX,Y) & (S(X,Y).v)

(For v a unit normal vector field on M)



LKC's: The general case
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LKC's: The general case
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Leonhard Euler Jules Henri Poincaré
Switzerland France
1707-1783 1854-1912



Ly: The Euler-Poincaré characteristic

M c RN is nice, of dimension k, and “triangulisable’
ag = number of vertices
«1 = number of lines

a, = number of “full” simplices in the triangulation

Lo(M) = Euler characteristic of M is

o(M) = ap—a1+---+ (—1)daN



3-d excursion sets

Meatball, EC=21
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Averaged geometry

of

excursion sets



Excursion sets

A, = A(f,M) £ {teM: f(t) > u}



A 30-year old formula

Suppose f is Gaussian, mean zero, variance o2, stationary, and
isotropic, with second spectral moment A\, and M = [0, T]V
Then:
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One dimension: A line of length T
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Two dimensions: A square of side length T
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Three dimensions: A cube of side length T
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Center for Astrophysics (CfA) survey

at the apex of the cone.

10,506 galaxies in the cone-shaped survey region, which extends
out to 135 megaparsecs in the northern hemisphere, with the earth




S0 T T T T T T T T

6o ~ ]
o A
o N
! f}' A “Meat ball”
40 i f HI topology 1
"Bubble” - '
| topalagy - . ]
. 20 v
G e . I'JM"}" %‘,' h
m - 3 \\
f’E o _——— =T LS LTy ﬂ;”ﬂ] .
= ‘-m v
g ‘;" w
5 -20 ﬂ.l Magnification
2 &
-
E \
o spongs
—40 topalogy I 4 \ﬂ
' 0
\ h | P
—en} 1 ] al L I.;.] 4
. ) 1[ J
\ L
[ f I |
—Hor Yl v Y T as ]
—— Obeerved oA : :
Expected
_100 L . L ' . L .
5 —4 -3 -2 -1 0 1 z 3 4 s

Gaussian threshold, u

The observed EC of the set of high-density regions of the CfA
Galaxy survey. Also shown is the expected EC for randomly
distributed galaxies with no structure; the CfA data has smaller EC
than expected, indicating less “blobs” and more clumping of
galaxies into clusters, strings, and “walls".
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DMR's Two Year CMB Anisotropy Result
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Figure 12. Plot of the observed EC of excursion
ets of the anomalies in the cosmic microwave back-
round radiation (jagged line), and the expected EC
rom the formula (smooth line) if there are no real
nomalies. The observed microwave background radi-
tion produces an EC curve similar in shape to that

expected, but somewhat lower and spread more in the
tails evidence that some of the anomalies are real and
not just due to random noise. This discrepancy points
to a Gaussian random field model for the anomalies,
with a larger standard deviation and a larger smooth-
ness than the background noise.






Excursion probabilities

P{sup,en f(t) = u}

~ E{Lo (Au(f, M))}
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Gaussian threshaold, u

Observed and expected EC for the PET data and the expected EC
if there is no activation due to the linguistic task. In particular, at
u = 3.3 we expect an EC of 1, but we observe 4. At the 5% critical
value of u = 4.22, we expect 0.05 but we observe 2 components.



A more general result

Ap = Ap(f,M) & {te M: f(t) e D}
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Non-Gaussian fields
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Now for the mathematics



A more general result

Ap = Ap(f,M) & {te M: f(t) e D}
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Gaussian tube formula
Gauss measure on RK

A 1 7X22
’Yk(D): (27T)I</2/De””/dx

Gaussian tube formula
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Y(Tube(D, p)) = (D) + 5%, M} (D)
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Turn M into a Riemannian manifold with

gt(Xr, Yt) = E{tht' tht}



Turn M into a Riemannian manifold with

gt(Xr, Yt) = E{tht' tht}

Curvature tensor:,

R(X,Y,Z,W) = (VxVyZ —VyVxZ — VixyZ, W)

Second fundamental form S

S(X,Y) & UxY - VxY = P, (@XY)

Scalar second fundamental form S,

SU(X,Y) 2 (S(X,Y).v)

(For v a unit normal vector field on M)



LKC's: The general case

N
Li(M) = Z

T8 M 2
Nmm / / ! <Rm5{//v IJ m)
oM J S(T:0; ML)

xInem(=vn—j) Hn—j-1(dvn—;)H;(dt)



LKC's: The general case
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A more general result

Ap = Ap(f,M) & {te M: f(t) e D}
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Kinematic fundamental formula
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Kinematic fundamental formula
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Kinematic fundamental formula
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A more general result

Ap = Ap(f,M) & {te M: f(t) e D}
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Crofton’s formula on RV
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Crofton’s formula on RV
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A Gauss-Crofton formula

M a C2, n-dimensional, Riemannian manifold
yl, ..., y* Gaussian on M, matched to the metric

Define, for u € R¥, the (random) submanifold
D, = {te M ytlzul,...,ytk:uk}
Take Z, € R¥ standard Gaussian independent of y
Dz, = {teM: ye= 2}

_kj2 Lk +J]!
[]!

E{Lj(MODz)} = (2m) Lirj(M)



About the proofs



Excursion probabilities
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Mapping to the sphere
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Mapping to the sphere

Zgncpn & lt))

1 = E{f?} = Zsoj = lle(1)ll



Mapping to the sphere

Zgn% & lt))

1 = E{f?} = Zsoj = lle(1)ll

Map M into the sphere with

t — ()



Mapping to the sphere

Zgn% & lt))

1 = E{ff} = Zso, = [le(0)ll
Map M into the sphere with
t — (1)
Then
A -1
g(x) = e (%)
has covariance

E{g(x)g(y)} = (x,y)



One (Gaussian) case covers all !7!

t = ot) 2 (e1(t),....ox(D)
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Laboratoire de

@ﬁh Probability Summer School
Saint-Flour (France), July 5-18, 2009
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Founded in 1971, this school is organised every year by the Laboratoire de Mathématiques (UMR 6620). It is supported
by e Pascal University (Clermont-Ferrand I1), the Ministry of Research and the €.N.R.S. It is intended for PhD
students, teachers and researchers who are interested in probability theory, statistics, and in applications of these technigues.

The school has three main goals:

1. to provide, in three high level courses, a comprehensive study of a field in probability theory or statistics;
P Y R

Directeur

Youcef Amirat
Tél: +33 (0)4 7340 70 62

Secrétariat

Valérie Sourlier
Tél : +33 (0)4 7340 70 50
Fax : +33 (04 73 40 54 50

Informatique

Damien Ferney
Tél: +33 (0)4 7340 70 68

Cédric Barrel
Tél: +33 (0)4 7340 70 55

Adresse

Laboratoire de Mathématiques
Université Blaise Pascal
Campus Universitaire des
Cézeaux

63177 Aubiére cedex

France

Fax : +33 (04 734070 64

Webmaster



The lecturers are chosen by the Scientific Board of the school.

Lectures 2009

Robert ADLER: Topological complexity of smooth random functions.
Mireille BOUSQUET-MELOU: Enumerative combinatorics for probability.
Alison ETHERIDGE: Some mathematical models from population genetics.

Abstracts

Practical information and registration rate

The participants will be lodged at the Maison des Planchettes, 7 rue des Planchettes, 15100 Saint-Flour (France). The lectures
will be given at the same place. Full board accommaodation is included in the registration fee for the participants; the families
can also be lodged, and their accommodation should be paid for during the school.

More information, in particular the registration fee, will be available in February.

Registration



ADLER * TAYLOR ROBERT J. ADLER
Random Fields and Geometry SMM JONATHAN E. TAYLOR

This monograph is devoted to a completely new approach to
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geometric problems arising in the study of random fields. The e l_]_ u Q “_]_ - |_ L: 0‘ (S
groundbreaking material in Part 111, for which the background is L2
carefully prepared in Parts 1 and 11, s of both theoretical and practical d

importance, and striking in the way in which problems arising in
geometry and probability are beautifully intertwined.
The three parts to the monograph are quite distinct. Part I presents.

ADLER

a user-friendly yet comprehensive background to the general theory TALOR

of Gaussian random fields, treating classical topics such as continuity
and boundedness, entropy and majorizing measures, Borell and
Slepian inequalities. Part II gives a quick review of geometry, both
integral and Riemannian, to provide the reader with the material
needed for Part 111, and to give some new results and new proofs of
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theory. These applications, o appear in a ing volume, will
cover areas as widespread as brain imaging, physical oceanography, (.
and astrophysics. L
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Springer Monographs in Mathematics

@ Springer

springer.com



