First-passage times and reaction kinetics in confined media

O. Bénichou, S. Condamin, Y. Klafter, B. Meyer, V. Tejedor, R. Voituriez

Laboratoire de Physique Théorique de la Matière Condensée,
Université Pierre et Marie Curie, Paris.

Models and Images for Porous Media Workshop
First-passage statistics: First definitions

How long does it take a random walker to reach a target site?

First-passage time

Many physical processes are controlled by first-encounter properties:

- Microscopic scale: diffusion limited reactions
- Macroscopic scale: search processes (animals looking for food ...)

\[\langle T \rangle : \text{mean first-passage time (MFPT) of a symmetric random walker} \]

- In absence of confinement: \(\langle T \rangle = \infty \)
- In presence of confinement: \(\langle T \rangle < \infty \)

How does \(\langle T \rangle \) depend on the confinement and on the transport process?
Experimental context: Reactivity in confined media

Example: biomolecules (DNA-binding protein) reacting at a **specific location (specific gene)** in a cell.

How \(\langle T \rangle \) depends on:

1. the confining **volume** \(N \)?
 \[\lim_{N \to \infty} \langle T \rangle = \infty, \] but how \(\langle T \rangle \) grows with \(N \)?

2. the **distance** \(r \) between S and T?
 Is the **initial position** of the reactant an **important** parameter of the **kinetics**?

3. the **transport** process?
 Effects of crowding, anomalous diffusion...
Theoretical context:
[highly non-exhaustive biblio…]

(quasi) 1D geometries

[Redner…]

Main ingredient: backward equation.

\[\Delta S \langle T \rangle_S = -1 \quad \text{with} \quad \langle T \rangle_{S=T} = 0; \quad \partial_S \langle T \rangle_{S \in \text{bound.}} = 0 \]

follows from \[\langle T \rangle_S = 1 + \frac{1}{2} (\langle T \rangle_{S-1} + \langle T \rangle_{S+1}) \]

Averages over starting point

[Montroll…]
Mean return times

Blanco, Fournier (2003), Mazzolo (2004):

Pearson walk of velocity \(v \), and reorientation rate \(\lambda \)

\[
\langle t_1 \rangle_{\Sigma} = \frac{\eta_d}{v} \frac{V}{\Sigma} \quad \text{Independent of } \lambda!
\]

Generalizations using Backward Chapman-Kolmogorov equation

- General boundary conditions
 \[
 \langle t_1 \rangle_{\Sigma_{\text{abs}}} = \frac{\eta_d}{v} \frac{V}{\Sigma_{\text{abs}}}
 \]

- Residence time in a subdomain \(V' \)
 \[
 \langle T_1 \rangle_{\Sigma_{\text{abs}}} = \frac{\eta_d}{v} \frac{V'}{\Sigma_{\text{abs}}}
 \]

Discrete case: KAC formula (1947) \[
\langle T \rangle_{\text{return}} = 1/P_{\text{stat}} = N
\]
Outline

I MFPTs of simple random walks

II MFPTs in complex scale-invariant systems
An exact formula for MFPTs

“Renewal equation” : relates
the propagator \(W(\mathbf{r}, t|\mathbf{r}') \)
the first-passage time density \(P(\mathbf{r}, t|\mathbf{r}') \)

\[
W(\mathbf{r}_T, t|\mathbf{r}_S) = \int_0^t P(\mathbf{r}_T, t'|\mathbf{r}_S)W(\mathbf{r}_T, t-t'|\mathbf{r}_T)dt'
\]

*first visit of \(T \) at \(t' \) \quad \text{return at} \quad T \text{ in } t-t'

\[
\langle T \rangle = N(H(\mathbf{r}_T|\mathbf{r}_T) - H(\mathbf{r}_T|\mathbf{r}_S))
\]

[\text{Noh & Rieger (PRL 2004)}]

where \(H(\mathbf{r}|\mathbf{r}') = \int_0^{\infty} (W(\mathbf{r}, t|\mathbf{r}') - 1/N)dt \)

Exact, but \textbf{formal}
expression of the MFPT

How to go further ???
Large volume asymptotics

$$\lim_{N \to \infty} \frac{\langle T \rangle}{N} = \lim_{N \to \infty} \left(H(r_T|r_T) - H(r_T|r_S) \right)$$

with $$\lim_{N \to \infty} H(r_T|r') = \int_0^\infty W_0(r, t|r') dt = \text{infinite-space Green function}$$

$$\langle T \rangle \simeq N(G_0(0) - G_0(r))$$

$$\langle T \rangle$$ is proportional to the confining volume $$N$$

(This is not a severe infinite-space approximation of the MFPT !)

Explicit dependence in the source-target distance $$r$$

If $$d=3$$, $$\langle T \rangle \simeq N \left(G(0) - \frac{3}{2\pi r} \right)$$ with $$G(0) = 1.516386...$$

If $$d=2$$, $$\langle T \rangle \simeq N \left(\frac{3}{\pi} \ln 2 + \frac{2\gamma}{\pi} + \frac{2}{\pi} \ln r \right)$$
3D Lattice Random Walks

[Condamin et al. PRL (2005)]

\[\langle T \rangle \simeq N \left(G_0(0) - \frac{3}{2\pi r} \right) \]
Outline

I MFPTs of simple random walks

II MFPTs in complex scale-invariant systems
Other transport mechanisms?

Example of a percolation cluster in confinement

\[\text{MFPT to go from S to T?} \]

• Renewal equation

\[
\langle T \rangle = N \left(H(r_T|r_T) - H(r_T|r_S) \right)
\]

where

\[
H(r|r') = \int_0^\infty \left(W(r,t|r') - 1/N \right) dt
\]

• Large volume asymptotics of the MFPT

\[
\lim_{N \to \infty} \frac{\langle T \rangle}{N} = G(0) - G(r)
\]

where

\[
G(|r - r'|) \equiv \int_0^\infty W_\infty(r, t|r') dt
\]

to go further, assumptions on the infinite-space propagator \[W_\infty(r, t|r') \] needed
Assumptions on the infinite-space problem

- number of sites enclosed in a circle of radius r:
 $$M_r \propto r^{d_f}$$
 where d_f is the fractal dimension of the medium
- time taken to a random walker to exit a circle of radius r:
 $$T_r \propto r^{d_w}$$
 where d_w is the dimension of the walk
- standard scaling assumption of the infinite-space propagator:
 $$W_\infty(r, t|r') \sim t^{-d_f/d_w} \Pi \left(\frac{|r - r'|}{t^{1/d_w}} \right)$$

[ben-Avraham and Havlin, (2000)]
General scaling of the MFPT

[Condamin et al. Nature (2007)]

\[
\langle T \rangle \sim \begin{cases}
N(A - Br^{d_w-d_f}) & \text{for } d_w < d_f \\
N(A + B \ln r) & \text{for } d_w = d_f \\
N(A + Br^{d_w-d_f}) & \text{for } d_w > d_f
\end{cases}
\]

- \(A \) and \(B \) depend \textbf{only} on the infinite-space scaling function \(\Pi \)

- \textbf{Linear dependence on the volume} \(N \)

- \textbf{non-compact} exploration (\(d_w < d_f \)): memory of the initial position \textbf{lost}

- \textbf{compact} exploration (\(d_w \geq d_f \)): the \textbf{initial} position \textbf{always matters}
3D Lattice Random Walks

\[2 = d_w < d_f = 3 \]

Non compact exploration

\[\frac{\text{MFPT}}{N} \]

Source-target distance

- **d=3, cube of side 41, target centred**
- **red: numerical simulations**
- **blue: approximate MFPT**
Critical percolation clusters

[Condamin et al, PNAS (2008)]

d_w > d_f

Compact exploration

\[\langle T \rangle / N \sim A + Br^{d_w - d_f} \]

- data for different sizes collapse
- good agreement with the theoretical curve
2D Random barrier model

inhomogeneous transition rates Γ
(quenched disorder)

- power law distribution of transition rates: $\rho(\Gamma) = (\alpha/\Gamma)(\Gamma/\Gamma_0)^\alpha$
- regular diffusion ($d_w = 2$) in dimension 2 ($d_f = 2$)
 with D_{eff} given by the effective medium approximation

$\langle T \rangle / N \sim \left(A + \frac{1}{2\pi D_{\text{eff}} \ln r} \right)$

![Graph showing MFPT vs. source-target distance]

- 50x50 domain
- 30x30 domain
- 10x10 domain
- theoretical curve
More about A and B:

“Zero” constant formula (compact case)

[Benichou et al. prl (2008)]

\[
\langle T \rangle/N \sim A + Br^{d_w-d_f} \quad \text{for } d_w > d_f
\]

- Continuous space limit gives \(\langle T \rangle (r \to 0) = 0 \) and therefore \(A = 0 \)
- Kac formula gives \(\langle T \rangle (r = 1) = N \) and therefore \(B = 1 \)

Then \(\langle T \rangle/N \sim r^{d_w-d_f} \)
Extension (i) : narrow escape time

Mean time to exit a bounded domain through a narrow aperture:

\[
\lim_{V \to \infty} \frac{\langle T \rangle}{V} = \begin{cases}
\alpha(a_{w}^{d_{w}} - r_{f}^{d_{w}} - d_{f}) & \text{for } d_{w} < d_{f} \\
\alpha \ln(r/a) & \text{for } d_{w} = d_{f} \\
\alpha(r_{w}^{d_{w}} - a_{w}^{d_{w}} - d_{f}) & \text{for } d_{w} > d_{f}
\end{cases}
\]

Compact exploration
the starting point is important

Non-compact exploration
weak dependence on the starting point
Extension (ii) : case of competitive reactions

Splitting probability P_1:
probability to reach the target 1 before the target 2?

$P_1 \sim \frac{A + B(r_{2S}^{d_w-d_f} + r_{12}^{d_w-d_f} - r_{1S}^{d_w-d_f})}{2(A + Br_{12}^{d_w-d_f})}$

Compact
exploration

the **furthest** target is
almost never reached first

Non-compact
exploration

the **furthest** target has a **finite**
probability to be reached first
FPTs and subdiffusion

\[\langle \Delta r^2 \rangle \sim t^\beta \text{ with } \beta < 1 \]

“Fractal” static medium

\[\langle T \rangle / N \sim r^{d_w - d_f} \]

where \(d_w = \frac{2}{\beta} \)

“Dynamic” crowded medium

Continuous Time RW \(\psi(t) \sim C / t^{1+\beta} \)

\[\text{Prob.}(T = t) \sim C \langle n \rangle / t^{1+\beta} \]

where \(\langle n \rangle \sim N(A - B / r) \) (\(d = 3 \))

Very different dependence on geometry
Concluding remarks: reactivity in confined media like cells?

Dilute medium (3d regular diffusion)

\[\langle T \rangle \]

the initial position doesn’t matter

Crowded medium (3d percolation cluster)

\[\langle T \rangle \]

the initial position is a key parameter

Spatial organization is crucial

Non-compact exploration

Compact exploration
Thanks

O. Benichou, M. Moreau, J. Klafter
S. Condamin, V. Tejedor, B. Meyer, C. Chevalier